《第 244 章 对勾深研,智慧绽放》
时光悄然流逝,戴浩文与学子们沉浸在对勾函数的奇妙世界,已然忘却了时间的流转。自开启对勾函数的探索之旅后,众人对这神秘的数学之象愈发好奇,求知之火熊熊燃烧。
戴浩文见学子们如此热忱,心中欣慰。一日,他踱步于学堂,目光如炬,缓缓开口:“吾辈既已初窥对勾函数之奥秘,今当更进一步,深究其中之玄妙。”学子们正襟危坐,眼神满是期待。
“先看对勾函数的变形之法。对勾函数一般形式为 y = x + a/x,其中 a 为常数且 a≠0。若将其变形,可得 y = (√x)2 + (√a/√x)2 - 2√a + 2√a = (√x - √a/√x)2 + 2√a。”
学子们凝视黑板上的公式,陷入沉思。戴浩文见状,微笑道:“细思此变形有何妙处?”一学子起身拱手道:“先生,此变形可更直观看出函数最值情况。”戴浩文微微点头:“善哉!汝之悟性颇高。当√x = √a/√x 时,即 x = √a,此时函数取得最小值 2√a。”
“再观对勾函数之拓展。若将对勾函数变为 y = mx + n/x,其中 m、n 为常数且 m、n≠0,此又当如何分析?”学子们低头思索,片刻后,一学子道:“先生,此似可类比一般之对勾函数,其图像亦应为类似双勾之形状。”戴浩文赞道:“然也。此函数之性质与一般对勾函数有诸多相似之处,亦有其独特之处。其定义域仍为 x≠0,奇偶性可通过计算 f(-x)来判断。当 x>0 时,其单调性亦需通过求导等方法来确定。”
戴浩文继续道:“今再探对勾函数与其他函数之关系。若有函数 y = kx + b,其中 k、b 为常数,当此函数与对勾函数相交时,又当如何求解?”学子们面面相觑,感此问题棘手。戴浩文引导道:“可先联立两函数方程,再求解方程组。”学子们恍然大悟,纷纷动手尝试。
一学子率先求解道:“设对勾函数 y = x + a/x 与函数 y = kx + b 相交,则有 x + a/x = kx + b,整理得 x2-(kx + b)x + a = 0。”戴浩文点头道:“甚善。由此方程可求解出交点之横坐标,进而求出纵坐标。此乃求解对勾函数与其他函数相交问题之关键。”
“对勾函数之应用,远不止此前所讲。有一商人欲运货,已知货物重量为 m,
本章未完,请点击下一页继续阅读! 第1页 / 共4页