《第 224 章 开平方数的奇妙估算》
在经历了泰勒展开式的深入学习后,戴浩文和学子们稍作休整,便迎来了新的知识篇章——开平方数的估算。
这一日,阳光透过学堂的窗户,洒在学子们充满期待的脸庞上。戴浩文站在讲台上,目光炯炯。
“诸位学子,今日我们将一同探索开平方数的估算之法。”戴浩文的声音沉稳有力。
他转身在黑板上写下一个数字,“比如,要估算 √10 的值,我们该如何着手呢?”
学子们面面相觑,陷入沉思。
戴浩文微微一笑,说道:“首先,我们要找到两个完全平方数,使得所求的开平方数介于它们之间。对于 √10 ,我们知道 3 的平方是 9 ,4 的平方是 16 ,所以 √10 就在 3 和 4 之间。”
“那如何进一步精确估算呢?”有学子问道。
戴浩文点了点头,继续说道:“我们可以采用逐步逼近的方法。假设我们先估计 √10 约为 3.1 ,那么 3.1 的平方是 9.61 ,小于 10 ;再假设是 3.2 ,其平方为 10.24 ,大于 10 。所以 √10 就在 3.1 和 3.2 之间。”
学子们听得入神,纷纷拿起笔在纸上计算起来。
戴浩文接着举例:“再看 √20 ,4 的平方是 16 ,5 的平方是 25 ,所以 √20 在 4 和 5 之间。我们先假设是 4.4 ,平方后是 19.36 ,小于 20 ;假设是 4.5 ,平方后是 20.25 ,大于 20 ,所以 √20 就在 4.4 和 4.5 之间。”
王强抬起头,疑惑地问:“先生,这样逐步估算,是不是很麻烦?有没有更简便的方法?”
戴浩文笑了笑,说道:“莫急,且听我慢慢道来。有一种方法叫二分法。还是以 √10 为例,我们先取 3 和 4 的中间值 3.5 ,其平方为 12.25 ,大于 10 ,所以 √10 在 3 和 3.5 之间。再取 3 和 3.5 的中间值 3.25 ,平方后为 10.5625 ,大于 10 ,所以 √10 在 3 和 3.25 之间。这样不断缩小范围,就能越来越精确地估算出开平方数的值。”
为了让学子们更好地理解,戴浩文又出了几道题目让大家现场练习。
“估算 √15 ,√25 ,√30
本章未完,请点击下一页继续阅读! 第1页 / 共4页