- 1)d ,所以 Sn = n(a1 + a1 + (n - 1)d) / 2 ,化简后得到 Sn = n[2a1 + (n - 1)d] / 2 ,进一步变形可得 2Sn = n(2a1 + (n - 1)d) , 2Sn = 2na1 + n(n - 1)d , 2a1 = (2Sn - n(n - 1)d) / n ,最终得出 a1 = (2Sn - n(n - 1)d) / 2n 。”
戴浩文带头鼓掌:“推导得非常精彩!那我们再来看一个实际应用的例子。假设一个等差数列的前 10 项和为 150 ,公差为 2 ,求首项。谁能来解一下?”
学子们纷纷埋头计算,不一会儿,一位学子举手说道:“先生,我算出来了。根据刚才推导的公式,a1 = (2×150 - 10×9×2) / 20 = 6 。”
戴浩文点了点头:“正确。那我们再思考一下,如果已知等差数列的前三项和为 12 ,且前三项的平方和为 40 ,如何求这个数列的通项公式呢?”
这个问题让学子们感到有些棘手,但他们并没有退缩,而是相互讨论,尝试着寻找解题的方法。
过了许久,一位学子说道:“先生,我设这三项分别为 a - d ,a ,a + d ,然后根据已知条件列出方程组,可以求出 a 和 d ,进而得到通项公式。”
戴浩文说道:“那你来具体解一下这个方程组。”
学子在黑板上写道:“(a - d) + a + (a + d) = 12 , (a - d)2 + a2 + (a + d)2 = 40 。 解第一个方程得 3a = 12 ,a = 4 。将 a = 4 代入第二个方程得 (4 - d)2 + 16 + (4 + d)2 = 40 ,化简得到 16 - 8d + d2 + 16 + 16 + 8d + d2 = 40 , 2d2 = 40 - 48 , 2d2 = -8 ,d2 = -4 (舍去)或者 d = 2 ,d = -2 。所以当 d = 2 时,通项公式为 an = 2 + 2(n - 1) = 2n ;当 d = -2 时,通项公式为 an = 8 - 2(n - 1) = 10 - 2n 。”
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
戴浩文说
本章未完,请点击下一页继续阅读! 第2页 / 共4页