的是,在探索梅森素数奥秘的一众科学家中,我国数学家、语言学家周海中是梅森素数方面研究的领先者。
周老先生运用联系观察法和不完全归纳法,于1992年2月首次给出了梅森素数分布的精确表达式,为人们寻找这一素数提供了方便。
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
后来,这一重要成果被国际上命名为“周氏猜测”。
国际着名科普杂志《科学美国人(中文版)》2000年第6期刊登的一篇评论文章指出,“周氏猜测”是梅森素数研究中的一项重大突破。
美籍挪威数论大师、菲尔茨奖和沃尔夫奖得主阿特勒·塞尔伯格认为:“‘周氏猜测’具有创新性,开创了富于启发性的新方法,其创新性还表现在揭示新的规律上。”
为什么要登山?
因为山就在那里。
同样的道理,为什么要追寻梅森素数的发掘?
也是因为同样的理由。
无论去不去刻意发掘,更大的梅森素数也注定是存在的。
套用国际着名数学家希尔伯特说的话:“我们必须知道,我们必将知道。”
寻找梅森素数的大道,就是一条不断追寻真理发掘真相的必然之路。
不过林枫没想这么多高大上的东西。
对于林枫来说这些都不重要了,现在林枫满脑子搞钱搞钱还得是搞钱。
只有不为物质发愁的情况下,才能谈星辰大海。
话说回来,一个梅森素数如此麻烦,那么就算林枫提出了一个数是梅森素数,那么会不会验证起来也很麻烦呢?
如果真要验证一个梅森素数也要用时很长,那林枫岂不是想要通过梅森素数搞快钱的思路要崩溃了?
非也,虽然发现一个梅森素数很麻烦。
但如果对于给定的一个数,验证其是不是梅森素数从理论上出发还是要相对简单的。
验证一个数是否为梅森素数一般是有套路的。
首先判断该数是否为素数。
素数是只能被1和它本身整除的正整数,有多种方法可以判断一个数是否为素数,比如试除法、欧拉判别法、费马小定理等。
如果该数是素数,再判断是否满足梅森素数的定义。
判断是否可以表示为2^p-1的形式,其中p是一个素数。
为了判断一个数是否可以表示为2^p-1的
本章未完,请点击下一页继续阅读! 第3页 / 共6页