了,盖大楼的砖块一共就这么三种,接下来把它们组合在一起就行了。
我们定义一个叫“组合”的函数f,它的功能是把n个函数组合在一起:
f:Nn—N
具体的,如果每一个被组合的函数g都可以接受同一组参数(x1,...,xm),那么组合n个g函数的操作可以被表示为:
f·[g1,...,gn]:Nm—N
展开为:
f·[g1,...,gn](x1,...,xm)=f(g1(x1,...,xm),...,gn(x1,...,xm))
举个栗子:
我们构造一个函数one,one(x)=1,即:不论给它什么输入,它都输出为1,那么:
one(x)=succ(0)=succ(zero(x))
即:succ·[zero]=one
验证一下:
succ·[zero](x)=succ(zero(x))=succ(0)=1
succ和zero两个基本函数组成了我们要的one,完美。
如果栗子再复杂一点,我们想要一个加法器add,add(x,y)=x+y,怎么用那三种基本函数组合?
也很简单,从具体输入入手:
add(3,2)=succ(add(3,1))=succ(succ(add(3,0)))=succ(succ(3))
似乎只需要组合多个后继函数就可以了呢。
当然,这里面有一个毛病,在于我们在没有定义好add的前提下,先入为主地认为add(3,0)=3.
所以我们不能认为自己就这么简单地构造了add,只能退而求其次地得到以下关系:
add(x,y+1)=succ(add(x,y)),这个式子是十分严谨的。
更具体地,要想算出add(x,y+1),就要知道add(x,0)=x,我们称add(x,0)=x为基准条件;add(x,y+1)=succ(add(x,y))为递归条件。
看起来就差临门一脚了,只要我们能用三种基本函数构造出add(x,0)=x,就能得到add(x,y+1),也就能构造出我们想要的加法器。
也很显然,add(x,0)=x=proj11
于
本章未完,请点击下一页继续阅读! 第2页 / 共5页