>
(二)膜电极组件(MEA)的优化
改进质子交换膜的性能,提高气体扩散层的传质效率,优化电极结构,增强燃料电池的功率密度。
(三)操作条件的优化
精确控制温度、湿度和压力等操作参数,提升燃料电池的耐久性和性能稳定性。
四、关键技术突破之二:氢气存储与供应
(一)高压气态储氢技术的改进
提高储氢罐的压力承受能力和安全性,增加储氢密度。
(二)液态储氢技术的发展
降低液态氢的储存成本,提高储存和运输的便利性。
(三)新型储氢材料的研究
如金属氢化物、有机液体储氢等,探索更高储氢容量和更安全的储氢方式。
(四)加氢基础设施的建设
布局广泛且便捷的加氢站网络,确保氢气的稳定供应。
五、关键技术突破之三:系统集成与优化
(一)燃料电池与车辆动力系统的集成
实现燃料电池与电池、超级电容等其他能源存储装置的高效协同工作,提高整车性能。
(二)热管理系统的优化
有效控制燃料电池工作过程中的热量产生和散发,确保系统在适宜的温度范围内运行
本章未完,请点击下一页继续阅读! 第2页 / 共4页