通物质之间的相互作用机制仍然是一个未解之谜。此外,恒星和行星的内部结构和能量产生过程也各不相同,这些因素都使得模型的构建变得异常困难。
经过长时间的努力,他们终于建立了一个相对完整的宇宙能量网络模型。这个模型虽然还存在一些不确定性和误差,但已经能够对能量晶体调控引发的宇宙能量变化进行初步的模拟和分析。通过对模型的模拟实验,他们发现能量晶体的能量输出在经过超光速能量波的传播后,会在宇宙中的某些特定区域形成能量“聚集点”。这些聚集点就像是宇宙能量网络中的“风暴眼”,它们会吸引周围的能量物质,导致能量密度急剧增加。
而恒星和行星所处的位置与这些能量聚集点的关系决定了它们受到影响的程度。当恒星或行星靠近能量聚集点时,就会受到强烈的能量冲击,从而引发能量波动和环境变化。探险小队意识到,要稳定宇宙能量平衡,关键在于控制能量晶体的能量输出,避免在宇宙中形成过多的能量聚集点。
然而,要实现这一目标并非易事。能量晶体的能量输出受到其内部神秘核心区域的能量结构体和能量网络的制约,而且这些内部因素又与宇宙能量网络相互关联。为了找到一种有效的控制方法,探险小队决定对能量晶体的神秘核心区域进行更加深入的探索。
他们再次将注意力集中在核心区域内的能量结构体和能量通道上。通过对之前探测器传回的数据进行更细致的分析,他们发现能量结构体之间的能量共鸣现象并非是固定不变的,而是会随着宇宙能量网络的变化而调整。这种自适应的共鸣机制使得能量结构体能够在不同的宇宙能量环境下维持相对稳定的能量状态,但也增加了探险小队对其进行控制的难度。
在对能量通道的研究中,他们发现了一些新的细节。这些能量通道的内壁上存在着一些微小的能量漩涡,这些漩涡就像是能量通道的“阀门”,它们能够控制能量的流动速度和方向。而且,这些漩涡的旋转速度和方向与宇宙能量网络中的能量波动有着密切的联系。当宇宙能量网络出现较大的能量变化时,漩涡的状态也会相应地改变,从而调整能量通道中的能量流动。
本小章还未完,请点击下一页继续阅读后面精彩内容!
探险小队开始尝试通过操控这些能量通道中的漩涡来影响能量晶体的能量输出。他们设计了一种特殊的能量干扰装置,这种装置能够发射出一种与漩涡能量频率相近的微弱能量波。当这种能量波与漩涡相互作用时,能够在一定程度上改变漩涡
本章未完,请点击下一页继续阅读! 第2页 / 共8页