作战决策提供准确的目标信息支持。
在理论拓展方面,华子墨提出了一种基于贝叶斯深度学习的新型模型架构。传统的深度学习模型在处理不确定性问题时存在一定的局限性,而贝叶斯理论擅长处理不确定性推理。他将贝叶斯方法融入到深度学习的神经网络结构中,通过对神经网络的权重参数赋予概率分布,实现了模型的不确定性量化。这种基于贝叶斯深度学习的模型不仅能够像传统深度学习模型一样进行特征学习和模式识别,还能够对模型预测结果的不确定性进行评估。例如,在图像识别任务中,当面对模糊不清或部分遮挡的图像时,该模型能够给出不同识别结果的概率分布,而不仅仅是单一的确定性预测,这为后续的决策提供了更多的信息和灵活性。
他还将贝叶斯理论与强化学习相结合,提出了贝叶斯强化学习算法。在强化学习中,智能体需要在未知的环境中不断探索和学习,以获取最优的策略。贝叶斯强化学习算法通过引入贝叶斯推理,能够在探索过程中更好地利用先验知识,减少不必要的探索,提高学习效率。例如,在机器人导航任务中,机器人需要在未知的室内环境中找到目标位置。贝叶斯强化学习算法能够根据机器人之前的探索经验以及环境的先验信息,如房间布局的概率分布等,更加高效地规划导航路径,避免机器人陷入死胡同或重复探索已经走过的区域。
基于多年在智能规划、兵棋推演技术、贝叶斯理论等多领域的深入研究经历以及丰富的实践经验积累,华子墨脑海中逐渐萌生出了 “战颅” 这一具有开创性的概念。
其最初的灵感来源可以追溯到他在兵棋推演技术研究过程中对传统指挥决策模式的深刻反思。在传统的兵棋推演以及实际军事指挥中,指挥决策往往依赖于指挥官的个人经验、知识水平以及临场应变能力。虽然这些主观因素在一定程度上能够发挥作用,但也存在着明显的局限性,如容易受到个人认知偏差的影响、在面对大规模复杂战场信息时处理能力有限等。华子墨意识到,需要构建一种能够超越人类主观局限的智能辅助决策系统,就如同为军队打造一个拥有超级智慧的 “大脑”,这便是 “战颅” 概念的雏形。
本小章还未完,请点击下一页继续阅读后面精彩内容!
在思考过程中,他联想到人类大脑的工作机制。人类大脑能够通过神经元的复杂连接和信息传递,实现对各种感官信息的快速处理、记忆存储、学习推理以及决策制定。于是,他设想能否借鉴这种生物大脑的工作原理,运用现代
本章未完,请点击下一页继续阅读! 第4页 / 共5页